-3(4x^2-3)/(2(4x^2+3)^2)=0

Simple and best practice solution for -3(4x^2-3)/(2(4x^2+3)^2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(4x^2-3)/(2(4x^2+3)^2)=0 equation:



-3(4x^2-3)/(2(4x^2+3)^2)=0
Domain of the equation: (2(4x^2+3)^2)!=0
x∈R
We multiply all the terms by the denominator
-3(4x^2-3)=0
We multiply parentheses
-12x^2+9=0
a = -12; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-12)·9
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*-12}=\frac{0-12\sqrt{3}}{-24} =-\frac{12\sqrt{3}}{-24} =-\frac{\sqrt{3}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*-12}=\frac{0+12\sqrt{3}}{-24} =\frac{12\sqrt{3}}{-24} =\frac{\sqrt{3}}{-2} $

See similar equations:

| 4-(-15)-(-9)-(-3)=x | | -2x+8+3x+4=-40 | | 18+(-8)-(-13)+(-16)=x | | -2+8-3x=-3x+6 | | 10+20x=15+.12x | | 12-(-13)-13-1=x | | (-11)-(-18)-(-19)-1=x | | 2(2z+5)=5 | | 6x+13=x+33 | | 5x+18=57 | | 11x-12+3x+8=90 | | 4=w+23 | | -8-5x=-4-6x | | 16z+9=40 | | 13-(-11)-17+(-16)=x | | 7x+4(5x-16)=179 | | 3r+24/9=5r-10/5 | | 9x-40=x+56 | | -6-3(1+5d)=-39 | | (-7)+12-(-7)+(-8)=x | | 24/42=x/54 | | 3(2f-9)=9(f-6) | | 5x+2x+7=2 | | (-11)-(-8)+(-4)+16=x | | 2x-12=20+x | | 12x+20=5x-10-3x | | (-4)-11+12+(-3)=x | | 4x+38=x-13 | | 6z+9=40-10z | | x-1/18=7/9 | | (-4)-11+12+(-13)=x | | |–8c+4|+3=12 |

Equations solver categories